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ABSTRACT: Bounds on de-embedding errons are
denived. Both measurement ernons and "known" Load
erons ane condidered. 04 particular internest is the
determination of erron bounds for unknoun Loads Aitu-
ated in negions of the Smith chart that are nemote from
the Location of the known de-embedding Loads. An
example {s presented. This analysis is of particular
intenest fon de-embedding microwave diodes.

INTRODUCTION

In this paper some bounds on de-embedding errors
are derived which are especially applicable when mea-
suring microwave diodes. De-embedding is a two-step
process. The first step is to unterminate the embed-
ding network N (see Fig. 1) by the use of known or
standard loads'. The second step is to use the model
that we obtain for the embedding network from the first
step, together with measurements of the unknown load
taken through the network N, to estimate the parameters
of the unknown load. Frequently we are constrained to
use standard loads that are located in only one region
of the Smith chart. For instance, varactors, which may
be used for de-—embedding2 are limited to the capacitive
region of the I'_~-plane. We are particularly interested
here in deriving the error for unknowns that are located
in regions of the Smith chart which are remote from the
location of the standard loads. For example, given
standard loads located at I'_ = -1, -j, and 1, what is
the de-embedding error of an unknown load located at
PL = 0 or PL = j? We shall return to this example.
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Figure 1 The unknown embedding network N
terminated with a known load PL'

We consider two sources of error. §iy: error in
the measurement of the reflection coefficient at the
input of network N and §3;: error in our knowledge of
the standard loads. &yr is the radius of a small
circle on the I'-plane within which we expect the
reflection coefficient of a standard load, Ty, to lie.
8. is a function of I' . §;y defines the radius of an
ufidertainty circle arotind the measured reflection
coefficient FM at the input of network N. ¢.  in-
creases with measurement uncertainty. 81 is a function
of the input reflection coefficient, FM; gut, since FM
is related to I'_ by a bilinear transformation, alM is
also a function of I'_. In this analysis we assuiie that

61M and 62L have been determined previously either
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theoretically or experimentally. For instance, in our
work on cryosarsa, 62L was determined by the measure-
ment scatter among the diode packages that hold MOS
capacitor standards. In other words, by using highly
redundant data, we could obtain a handle on the size of
851, as a function of Ty O1y may be caused by noise,
nonlinearities, or calibration errors in the reflec-
tometer.

ERROR ANALYSIS
We determine the scattering parameters of network

N, correct to zero order, by the use of a standard
unterminating procedure such as that of Bauer and

Penfield!. From their unterminating calculations we
obtain estimates of Sll' 822, and A where A = 511522 -
S.,.S,,. We have
12721
s.. - T A
11 L
Ty T-Ts - )
722

It ig desirable to relate the radius of measurement
error, 81y, at the input reference plane to an equiva-
lent radius of error, {sy, at the I'y reference plane.
We know that such a relation exists because bilinear
transformations map circles into circles. We may £ind

this relation by taking the variation of Eq. (1).
dFM ~ 311522 - A
ar_ 2 (2
L (1 - FLszz)
or to zero order
2
8, = _____—(: _SFLSE% 6y (3)
11722

We may define a total equivalent error at the output
reference plane as

87, Ty 5 8y (Tp) + STy (4

Since the data used in the unterminating analysis
contain errors, the scattering parameters (Sl ’ 522, A)
computed for the network N, in reality, do no% specify
N but rather some network model, M. An unknown load
T'. and its corresponding measured input reflection
coefficient Ty (which we assume for the moment contains
no measurement error) are related by the scattering
parameters of N. By invoking the network model M, T
is estimated as I'” .. Since both N and M are perfect?y
well defined, there exists a bilinear transformation
between F'U and FU. We may write this transformation
as

A+ FU

= (5)
U 1-B-=-Cl

r-
This is shown schematically in Fig. 2(a). M } is the
network which undoes the bilinear Eransformation of
network M. (In MARTHA" parlance M ! < ~1 ZSCALE WN
M.) Note that by our construction of the problem the
magnitude of the etror in Fig. 2(b) is less than

8 2L(I'L). Because of the assumption that S,,, S,y and
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A are correct to zeroth order, I'y“a Ty and therefore
the magnitudes of A, B, and C are much smaller than
one. This may be checked by comparing the measured
values of Ty with those that can be computed by using
(1). They should differ in magnitude by no more than
81y + 811, where GlL is defined in a manner analogous to

GZM in (3),

S . (6)

The complex de-embedding error AzU(PU), which includes
only errors from the unterminating procedure, is
defined as the difference between the estimated and
true values of the load reflection coefficient. Expand-
ing (5) to first order, we obtain

AZU(TU) =T° - I‘Uz(l, T

2 T
u P TG @Bc)T. (D

U

We would like to relate the magnitude of Ay to
the equivalent radii of error 6'2L(P ). This is done
by examining AZU(PU) at three known &oads, that is,
AZU(TL)' Comparing Figs. 2(a) and 2(b) we observe that
for the special case of FU = I'y, (and therefore T'y = I'y)
we may identify Ayy(Ty) of Fig. 2(a) with the ettor of
Fig.2(b). We may state

|A2U(TL)|‘§ 8 o Tp) - (8)

To obtain the desired bound on |A2U(FU)| we first
evaluate (7) at PU A relation between the param-
eters A, B, and C, and Ayy(I'y) is found for the three
loads under consideration. A bound on Apy(Ty) may then
be found by invoking the triangle inequality.

= Iy,

ru/=ru*A2u(ru) FN—' ]'-‘Ll_>
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Schematic of how the network model M
is used to de-embed an unknown load

TU. The resulting exror is AZU(FU).
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Figure 2 (a)

(b) A useful network identity from the def-

inition of M. The magnitude of the
ernoh is less than 6’2L by definition.

AN EXAMPLE

The procedure is best illustrated by an example.
Consider, for instance, the three loads FL =1, -1, -j.
Evaluating (7) for these loads and letting oy = AZU(FL

= 1)5 Oy = Bpy(Ty = -1), and 0y = AZU(TL = =3}, we
obtain
T
(all 0‘21 OL3) = (A, B, C)H
where
1 1 1
H=|{1 -1 1]. (9)
1 -3 -1
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H is a function of the three standard loads. Combining
(7) and (8), we get
_ 2,.-1 T
AZU = (1, FU' PU YH (al, %y a3) (10)
where H—l may be evaluated as
- +3  1-3 2
H 1. %— 2 -2 0} (11)

1-§ 1+ -2

o, a2' and o.,, however, represent the equivalent error
o} thd standaid loads that are known in terms of 6°
from the first part of this article. Therefore we
write

UL

n

lat 1); qul L8, (T = -1

ogl < 87, L= 9. (12)

By using the triangle inequality we can rewrite (10)

1 . 2 . 2 a- ~
]AzU(FU)] 5_2-11 +3+ 2+ I° - 3Ty |6 T = 1)
1 . 2 o 2)n _
+ 7 [1 -3 - 2Ty + T° + 3Ty [s o (Tp, = -1
1 2| s .
+ g |2 =20 787, @ = -9). {13)

It is interesting to evaluate (13) for the two
unknown loads mentioned earlier. We also assume
8 2L(I"L = 1) = G.ZL(PL =-3) =6 2L(FL =-1) = €.
Under these conditions,

™
=
i

=0)| < 1.2¢

[a, (T =19)] < 3e. (14)

This illustrates clearly how the error grows in regions
of the Smith chart that are remote from the location of
the standard loads. The total radius of error for T

. U
at the load reference plane is

§ ()

TOTAL U (15)

= 18, T |+ 8y

Although it is demonstrated by a specific example,
the error analysis outlined here is very general. It
can also be programmed easily for computer or calcula-
tor use.
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