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theoretically or experimentally. For inetance, in our
work on cryosare3, 62L was determined by the measure-
ment scatter among the diode packages that hold MOS
capacitor standards. In other words, by using highly
redundant data, we could obtain a handle on the size of

&2L ae a function of rL. 81M may be caused by noise,
nonlinearities, or calibration errors in the reflec-

tometer.

In this paper come bounds on de-embedding errors

are derived which are especially applicable when mea-

suring microwave diodes. De-embedding is a two-etep

process. The first step is to unterminated the embed-
ding network N (see Fig. 1) by the use of known or

standard loadsl. The second step is to use the model
that we obtain for the embedding network from the first

step, together with measurements of the unknown load
taken through the network N, to estimate the parametera

of the unknown load. Fregpently we are constrained to

use etandard loads that are located in only one region

of the Smith chart. For instance, varactors, which may
be ueed for de-embedding2 are limited to the capacitive
region of the rL-plane. We are particularly interested

here in deriving the error for unknowns that are located

in regions of the Smith chart which are remote from the
location of the etandard loads. For example, 9iven

standard loads located at rL = -1, -j, and 1, what ie

the de-embedding error of an unknown load located at

rL=oOrI’L=j? We shall return to this example.
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Figure 1 The unknown embedding network N

terminated with a known load I’L.

We consider two eourcea of error. 61M: error in

the measurement of the reflection coefficient at the

input of network N and 62L: error in our knowledge of

the standard loads. d2L is the radius of a small

circle on the rL-plane within which we expect the
reflection coefficient of a etandard loadr ‘L1 to lie.

6 is a function of rL. 6M defines the radius of an

u%ertainty circle around the measured reflection
coefficient rM at the input of network N. 6 “i;MaL;;ction
creases with measurement uncertainty. 61

of the input reflection coefficient, rM; ihtr since rM

is related to rL by a bilinear transformation, 81M is

also a function of rL. In this analysis we assume that

61Mand 62L have been determined previously either

h.i.b utotck wd,b wppot(.ted .in pti by the join-t .S@L-
ViQbT~&~titi P&ogzam (CotU%zd VAAB07-75-C-13461.
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ERROR ANALYSIS

We determine the scattering parameters of network

N, correct to zero order, by the use of a standard
unterminating procedure such as that of Bauer and

Penfieldl. From their unterminating calculations we
obtain estimetea of S

11’ ’22
, and A where A E S11S22 -

‘12s21 “
We have

rM=~l~~~. (1)
L 22

It is desirable to relate the radius of measurement

error, 81M# at the input reference plane to an equiva-

lent radius of error, 132Mr at the rL reference plane.

We know that such a relation exists because bilinear
transformatione map circles into circles. We may find

thie relation by taking the variation of Eq. (l).

drM
‘11s22

-A

q= (1 - rLs22)2

or to zero order

a - rLs22)2
6

2M =
‘11s22

-A 61M”

(2)

(3)

We may define a total equivalent error at the output

reference plane as

l!’ 2L(rL) = 62,L(rL)+ ‘z~(r~). (4)

Since the data used in the unterminating analysis

contain errors, the scattering parameters (s ’22!
A)

%’ specifycomputed for the network N, in reality, do no

N but rather come network model, M. ?uI unknown load

ru and its corresponding meaeured input reflection

coefficient rN (which we assume for the moment contains

no measurement error) are related by the scattering

parameters of N. By invoking the network model M, r
is estimated aa r’u. J?Since both N and M are perfect Y

well defined, there exists a bilinear transformation

between r-u and ru. We may write this transformation

as

A+ru

r’u=l-B-cr “
u

(5)

This is shown schematically in Fig. 2(a). M-‘ is the

network which undoes the bilinear transformation of
network M. (In MARTHA* parlance M-l + ‘1 ZSCALE NM

M.) Note that by our construction of the problem the

magnitude of the UAoh in Fig. 2(b) is less than
6’ 2L(rL). Because of the assumption that S1l, S22, and
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A are correct to z=oth order, ru”=ru end therefore

the magnitudes of At B , and C are much smaller than

one. Thie may be checked by comparing the measured
values of rM with those that can be computed by using
(1) . They should differ in maqnitude by no more than

61M+61L-where 61= is defined in a manner analogous to
6 2M in (3),

I i

--i

‘11s22
-A

82
lL

6. (6)

(1 - rLs22)2 2L

The complex de-embedding error A2u(l’’u), which includes

only errore from the unterminating procedure, ia

defined as the difference between the eetimated and

true values of the load reflection coefficient. Expand-
ing (5) to first order, we obtain

A2u(ru) ~ r’u- ru~ (1, ruf ru2) (A, B, C,)T. (7)

We would like to relate the magnitude of A2U to

the equivalent radii of error d’2L(r ). This is done
by examining .A2u(rU) at three known ?oade, that ia,

A2U(rL). Comparing Fige. 2(a) and 2(b) we observe that
for the special case of ru = rL (and therefore rN = r14)

we may identify A2U(rL) of Fig. 2(a) with the ~ofi of
Fig.2(b). We may state

lA2u(rL) I : 6’2L(rL). (8)

To obtain the deeired bound on lA2u(ru)l we firat

evaluate (7) at ru = rL. A relation between the parem-

etera A, B, and C, end A2u(rL) ia found for the three
loads under consideration. A bound on A2U(I’U) may then

be found by invoking the triangle inequality.

ri=ru+A2umu) rN + ru +
1+ I I
I

J. 1

1 M-l A_ N t
=3

I I ; U::;$WN
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Figure 2 (a) Schematic of how the network model M

is used to de-embed an unknown load
ru. The resulting error is A2u(ru).

(b) A-useful network identity from the def-
inition of M. The magnitude of the

@AAofi is less than 6’2L by definition.

H is a function of the three standard loads. Combining

(7) and (8), we get

A
2U = (1, rut rU2)H-1 (al, 0“2, a3)T (lo)

-1
where E may be evaluated as

a , C%2, and ci3, however, represent the equivalent error

o% the standard loads that are known in terms of 6’.-

from the first part of this article. Therefore we
ZL

write

“Iu31s 6°2LwL = -j). (12)

By using the triangle inequality we can rewrite (10)

]A2u(ru) I :* II + j + 2ru + ru2 - jru21ti”2L(rL = 1)

+* 11- j - 2ru + ru2 + jru216’2L(rL = -1)

+: 12-. 2ru216-2L(rL = -j). (13)

It is interesting to evaluate (13) for the two

unknown loads mentioned earlier. We aleo assume

8’2L(rL = 1) = d-2L(rL= -j) s ti”2L(rL= -1) ~ E.

Under these conditions,

lA2u(ru = 0)1 ~ 1.2s

IA2U(I’U = j)l ~ 3s. (14)

This illustrates clearly how the error grows in regions

of the Smith chart that are remote from the location of
the standard loads. The total radius of error for ru

at the load reference plane is

6ToTm(ru)= lA2u(ru)l+ ~2M. (15)

Although it is demonstrated by a specific example,

the error analysis outlined here is very general. It

can aleo be programmed easily for computer or calcula-

tor use.
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Evaluating (7) for these loada end letting al ~ A2u(rL

= 1), U.2 ~ A2u(rL = -l), anda3 ~ A2u(rL = -j), we
obtain

(131, a2, a+ = (A, B, C)HT

where

()

111
H= 1 -1 1 . (9)

1 -j -1
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3.
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